- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Guan, Hong (2)
-
Nag, Soham (2)
-
Zou, Jia (2)
-
Dwarampudi, Mahidhar (1)
-
Goel, Rajeev (1)
-
Gunda, Venkatesh (1)
-
Maciejewski, Ross (1)
-
Masood, Saif (1)
-
Min, Hong (1)
-
Prisby, Jonathan (1)
-
Swamy, Niranjan (1)
-
Wang, Yancheng (1)
-
Xiao, Chaowei (1)
-
Xie, Lulu (1)
-
Yang, Yingzhen (1)
-
Yu, Lei (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Guan, Hong; Masood, Saif; Dwarampudi, Mahidhar; Gunda, Venkatesh; Min, Hong; Yu, Lei; Nag, Soham; Zou, Jia (, Proceedings of 2023 ACM Symposium on Cloud Computing (SoCC'23))Decision forest, including RandomForest, XGBoost, and Light-GBM, dominates the machine learning tasks over tabular data. Recently, several frameworks were developed for decision forest inference, such as ONNX, TreeLite from Amazon, TensorFlow Decision Forest from Google, HummingBirdfrom Microsoft, Nvidia FIL, and lleaves. While these frameworks are fully optimized for inference computations, they are all decoupled with databases and general data management frameworks, which leads to cross-system performance overheads. We first provided a DICT model to understand the performance gaps between decoupled and in-database inference. We further identified that for in-database inference, in addition to the popular UDF-centric representation that encapsulates the ML into one User Defined Function(UDF), there also exists a relation-centric representation that breaks down the decision forest inference into several fine-grained SQL operations. The relation-centric representation can achieve significantly better performance for large models. We optimized both implementations and conducted a comprehensive benchmark to compare these two implementations to the aforementioned decoupled inference pipelines and existing in-database inference pipelines such as Spark-SQL and PostgresML. The evaluation results validated the DICT model and demonstrated the superior performance of our in-database inference design compared to the baselines.more » « less
An official website of the United States government
